
Step-by-Step 1

 Jonathan Price

Making
an
XML
DTD
Step by Step

2Making a DTD

An IDEA tutorial
Instructions:

You get step-by-step instructions on building each tag. No more
abstract descriptions of syntax. You can see exactly how each tag
is constructed, from beginning to end.

Diagrams:
You see the structure in a large diagram, so you can tell where
each piece of punctuation goes, and what the components do.

Examples:
You get examples, so you can see exactly how the tags develop,
and how they look when completed.

Answers:
If you have questions, we have answers. Addressing the most
common questions that come up in the classroom, sidebars give
you context and background on the tags.

 © 2004 Jonathan Price

The Communication Circle

918 La Senda, NW

Albuquerque, NM 87107

http://www.webwritingthatworks.com

ThePrices@theprices.com

http://www.theprices.com

All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical,

photocopying, recording, or otherwise, without written permission from
the publisher. No patent liability is assumed with respect to the use of the
information contained herein. Although every precaution has been taken

in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

Published in the United States of America.
First Publication: 2004
ISBN: 0-9719954-1-9

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. The Communication Circle and Jonathan Price cannot attest to the

accuracy of this information. Use of a term in this book should not be
regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate

as possible, but no warranty or fitness is implied. The information provided
is on an “as is” basis. The author and the publisher shall have neither

liability nor responsibility to any person or entity with respect to any loss
or damages arising from the information contained in this book.

Step-by-Step 3

Contents

1. The XML declaration 3

2. The DOCTYPE declaration 4

3. A Document Type Definition (DTD) 8

4. Declare elements. 9

5. Declare the attributes of an element. 16

6. Reuse elements (and their attributes). 31

7. Declare entities. 33

8. Declare a notation. 43

9. Add comments for humans, only. 44

Answers 54

Index 61

Step-by-Step 1

 Jonathan Price

Making
an
XML
DTD
Step by Step

2Making a DTD

Making a Valid XML Document
Validitating XML documents makes them more useful,
consistent, and interchangeable.

An XML document must be well formed.

If not, you get a fatal error, and the parser refuses to complete its processing,
so it passes nothing along to the browser.

An XML document may also be valid.

• A parser checks the structure of each document against the standard
organization defined in the Document Type Definition (DTD).

• If you fail a test for validity, you just get an error.
• Validity constraints require declaring the document type, offering a

document type definition, and following its rules.
Validity guarantees that all documents referring to the same DTD have the

same structure.

When a document is valid, the processing software can
operate successfully on the contents.

The software knows what to expect, what tags to look for, in what order, what
is included in what.

In effect, the standard organization turns the document into structured data.

• As a result, software can pick and choose content based on the user's
choices, or preferences.

• Also, searching works the way it does in a relational or flat file data-
base—faster, and more accurately than a fulltext search would.

• Pages are more likely to appear consistent in format, to the user.

XML
rules

Parser

OK DTD OK

Browser
���������
���������

XML
document

Editor

Step-by-Step 3

1. In the XML declaration, inform the parser
whether your definition of the ideal structure
appears inside the document, or in another
document.

Inside
If your document includes a full definition of the document type (DTD)

inside the file, the document is a standalone. (Not recommended).

If the parser does not need any other document to understand this XML
document, you announce that this one is a standalone, in your XML declaration.

Example of XML declaration
<?xml version= "1.0" encoding="UTF-8" standalone="yes"?>

Example of a standalone document that can be vali-
dated because it includes its own DOCTYPE declara-
tion, including an internal DTD:

<?xml version= "1.0" encoding="UTF-8" standalone="yes"?>

<!DOCTYPE Copynotice [

<!ELEMENT legalese ANY>

<!ENTITY COPYDATE "2001">

]>

<Copynotice>

<legalese>This book is copyright by ThePrices.com in the year
©DATE; and woe to anyone who tries to copy it electronically
or in any way we cannot even imagine how.</legalese>

</Copynotice>

Outside, or Partially Outside
If your document refers to a separate Document Type Definition (DTD),

your document is not a standalone. You must alert the parser that it will need to
go find this other document (the DTD), following a line later in the file, called
the DOCTYPE declaration.

Example of XML declaration that is not standalone.
<?xml version= "1.0" encoding="UTF-16" standalone="no"?>

You do not say where that file is, in the XML declaration. You just alert the
parser that it should pay attention, because pretty soon you will get around to
saying where that file is. The standalone attribute is a suggestion, not a com-
mand. Some parsers ignore it.

XML
Document

Internal
DTD

Standalone = “Yes”

XML
Document

External
DTD

Standalone = “No”

4Making a DTD

2. Place a DOCTYPE declaration within the
XML document's prolog.

You are telling the parser what kind of document this is, by identifying the
Document Type Definition. Examples:

• Procedure
• Brochure
• DataSheet
• White.Paper

The DOCTYPE simply identifies the name of the type, and the location of
the DTD that describes its standard structure. It may also include the DTD,
though this is not a great idea, most of the time, or a subset of the DTD.

You may include one and only one DOCTYPE declaration per document.

If you want the document validated, you must include the DOCTYPE
declaration. If you don"t care about validation, you don"t have to.

The parser reads the declaration and fetches the DTD (from wherever) and
uses it to validate the document.

2a. Place the DOCTYPE declaration after the XML declara-
tion, and before any elements.

2b. Start the declaration with XML tag delimiters, the
angle bracket (<) and an exclamation point (!).

2c. Add the keyword DOCTYPE.
Your DTD has defined the logical structure and tags for a particular kind of

document. You are about to name that document type.

Compare

The Document Type
Definition (DTD) is a
separate document that
spells out the ideal
structure and contents
of that type of docu-
ment.

The DOCTYPE declara-
tion points to the DTD.

DOCTYPE Declaration

DOCTYPE
Name of

document
element

Source:
PUBLIC/
SYSTEM

<!DOCTYPE product_desc SYSTEM "http://www.abc.com/productdesc.dtd" >

RequiredRequired

Required
if using an
external

DTD

Location 1,
Location 2

Internal
DTD if any

1 Required
if using an
external

DTD

Optional

Step-by-Step 5

2d. Name the document element (the element that in-
cludes the whole content of the document).

The document element, also known as the root element, is the top element in
the hierarchy defined in your DTD.

Example of the beginning of the DOCTYPE declaration
<!DOCTYPE catalog

2e.Identify the type of source (SYSTEM or PUBLIC) and the
location(s) of the DTD file.

If you can provide a specific location for the file, use SYSTEM. In the
extremely rare case where you do not know where the DTD is, or it is so com-
mon that every parser knows it by heart, or can find it in an instant, you an-
nounce that the source is PUBLIC. Oddly, even in this case, you are encouraged
to provide a second locator, which is, well, a path leading directly to the file on a
particular system. Best practice: use SYSTEM.

SYSTEM
If you can provide a specific location, use SYSTEM, and give the Uniform

Resource Identifier (consisting of a Uniform Resource Locator or Uniform
Resource Name, i.e., URL or URN).

Using a URL

protocol path" : "
SYSTEM Location using URL

Example of SYSTEM locations using a URL
<!DOCTYPE FeatureList SYSTEM ""http://www.gobi.org/yurt.dtd"" >

<!DOCTYPE book SYSTEM ""file:///usr/local/xml/docbook/3.1/
docbook.dtd"" >

Using a URN

The Uniform Resource Name is used occasionally to give a unique, location-
independent name for a resource such as a standard DTD, or a person. To
identify the context of the name—where it comes from—we must identify
something called a namespace, a metaphysical cloud containing a bunch of
specific names all related to a particular category of information (such as names
for chemicals, or DVDs).

Q: Is the document
element the same as the
root element?

A: Yes. Usually the name
of the DTD is built on
the root element’s
name. For instance, if
you are making a
catalog, you may name
your DTD catalog.dtd,
and the top element will
probably be ''Catalog.''
Logically enough, the
name you put in the
DOCTYPE declaration
would be catalog.

Q: Why is a source
SYSTEM?

A: The most common
source is SYSTEM
because, in theory, the
file exists on your
system, or maybe
someone else’s system.

6Making a DTD

Example of a SYSTEM location using a URN
<!DOCTYPE FeatureList SYSTEM ""urn:w3.org:xhtml.dtd"" >

PUBLIC
If you are using a "well-known" industry-standard DTD, which may live on

a local server, or be available over a private network, you can use a general, non-
specific reference. (Very rarely used).

Example of PUBLIC location:
<!DOCTYPE book PUBLIC ""-//OASIS//DTD DocBook V3.1//EN"">

Because that location may be unavailable, or unknown, you should also give a
second (SYSTEM) location, that is, a specific path to the file, without bothering
to identify this as a SYSTEM location—within its own set of quotes.

Example of PUBLIC location followed by second loca-
tion:

<!DOCTYPE FeatureList PUBLIC ""ManchuCollaborativeYurt""

""http://www.gobi.org/yurt.dtd""

2f. If you are including all of the DTD within the document,
put that here within square brackets, instead of the
source and location.

urn Namespace
Identifier

" : "
SYSTEM Location using URN

: Namespace
Specific
String

prefix Owner//
Formal Public Identifier

text
class// descrip

tion // lan-
guage

For full details on the
DOCTYPE declaration,
please see An ABC of
XML Tags.

Step-by-Step 7

Example of an internal DTD within the DOCTYPE decla-
ration, defining a document element called ALERT,
which can contain any kind of content.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<!DOCTYPE ALERT

 [<!ELEMENT ALERTANY>]>

<ALERT>Emergency: Condition Yellow.</ALERT>

2g. If you are appending an internal subset, put it after
the external location.

Your declaration can point in two directions—outward, to an external DTD
file, and inward, to some local additions or refinements. You still have one
DOCTYPE declaration. It just has two parts—the external subset and the
internal subset.

Key: The internal subset takes precedence over the external subset.

Example of a DOCTYPE declaration with external and
internal subsets.

<?xml version="1.0"?>

<!DOCTYPE BIO SYSTEM ""file:///site/bio.dtd"" [

<!ENTITY ROUSSEAU SYSTEM "" file:///site/rousseauphoto.jpg""
NDATA JPG>]>

<BIO>

<TITLE>Rousseau the Philosopher</TITLE>

<DATE>June 28, 1712</DATE>

<SUMMARY>Born on this day, Jean-Jacques Rousseau became a
philosopher, writer, and musician. He wrote The Social Contract,
which provided ideas to the American Revolutionaries, and Confes-
sions, which deepened the genre of memoirs.

&ROUSSEAU;

</SUMMARY>

</BIO>

Rousseau the Philosopher
June 28, 1712

Born on this day, Jean-Jacques Rousseau
became a philosopher, writer, and musician.
He wrote The Social Contract, which provided
ideas to the American Revolutionaries, and
The Confessions, which led to thousands of
romantic memoirs.

2h. End with a greater-than character.

XML
Document

External
DTD

Internal
DTD

Standalone =”No”

8Making a DTD

3. Lay out your document's standard struc-
ture in a Document Type Definition (DTD).

• Element type declarations—The objects a document may contain,
arranged in a single hierarchy.

• Attribute-list declarations—The names of the characteristics you can
use to describe a particular element, along with a description of the
attributes" data types and default values.

• Comments—Notes to yourself or your team.
• Processing instructions—Commands to be passed to the application

that will be manipulating the document after the parser gets through
with it.

• Entity declarations—Boilerplate chunks of text, special characters,
macros, repetitive content from external sources

• Notation declarations—Non-XML content coming from outside the
document, such as images, their data formats, and the programs that
will be used to provide the information

• Parameter entity references—A collection of any of the other items
here, to be inserted with a single mention.

The DTD is usually a separate document, but it can appear as an appendage
to the DOCTYPE declaration.

All statements in the declaration begin with <! and end in >.

Keywords such as ELEMENT and ATTLIST (list of attributes) appear in
ALL CAPS.

Element type declarations

Attribute-list declarations

Comments

Processing Instructions

Entity declarations

Notation declarations

Parameter entity references

Document Type Definition
One

required

Step-by-Step 9

4. Declare elements.
Every document must have at least one element—the top level, or document

element. Remember: that's all that you need to produce a well-formed XML
document. Elements are pieces of content.

Within that document element, which we are declaring in the DTD, there
may be child elements, character data (text), or nothing at all, in various combi-
nations.

4a. Begin with <!

4b. Say what you are defining IN ALL CAPS (an ELEMENT).
This is a KEYWORD (predefined in the XML standard).

4c. Name the document type you are defining (a generic
identifier, or GI).

Examples: procedure, chapter, FAQ, invoice, white.paper, thank_you,
registration_form.

Q: Why are we talking
about a document type?

A: Type means category,
or class. You are
defining a class of
document. When you
actually create a
document with real
content, that particular
document is viewed as
an instance of the class.

XML Element Declaration

<!ELEMENT Name Contents >

PCDATA

ElementEMPTY

ANY mixed
Content
models

categories of element content

10Making a DTD

4d. Specify the type of content in the element.
There are five categories of element content:

• EMPTY—This is just a category. It has no content. This element does
not contain any text or child elements. You can attach attributes to this
empty element, though.

• ANY—This is just a category. Since it can include anything, it, too,
lacks any content model. You can include any well-formed XML data,
such as text or elements.

• element—Requires that you define a content model. An element
contains only elements. No extra text is allowed in this type of element.
You put the names of the child elements inside parentheses, when
making the structure explicit.

• mixed—Requires an extremely loose content model. May contain
ordinary text and/or elements. You put the names of the elements and
the text inside parentheses, separated by pipes, and add an asterisk after
the closing parenthesis.

• PCDATA—A category for text (characters), usually. May include entity
references such as those to oddball characters. You put the keyword
#PCDATA inside parentheses.

• If you want to point to another file such as a graphic, but have
no other content, put EMPTY in, without any parentheses
around it.

<!ELEMENT breakpoint EMPTY>

Note that the keyword EMPTY appears in all capital letters, without paren-
theses around it.

• If you allow any darn thing, without any structure, as content,
use ANY.

Of course, using ANY misses much of the point of XML. This category of
content can contain any well-formed XML data, so there is no particular valida-
tion within such an element, and we know nothing of the organization of the
chunks of content within this element.

Note that the keyword ANY appears without parentheses, in the declaration.

Example

We expect articles to come in from many different sources,
and we have no control over their content, tagging, or
formatting. To accommodate these, we define the content
as, well, ANY.

<!ELEMENT article ANY >

Q: Why would you want
an empty element?

A: If you want to mark a
spot in the document,
for the sake of later
formatting, or if you
want to take advantage
of the attributes of the
element without having
any content visible to
the user.

Even though the element
has no official content,
its attribute may point
to an external file, or
give some information
that you do not want
users to see. (More
about attributes later).

Step-by-Step 11

• If the element should contain only regular character data, put
#PCDATA in parentheses.

In the document itself, you can insert a character reference or a predefined
entity reference so as to get special symbols or boilerplate into the character
stream.

You cannot insert elements into the character stream, though. Saying that
the content will be PCDATA means that the element contains no child elements.
If you try to sneak one in, you get a validity error.

You may put a space character between the parenthesis and the #PCDATA
keyword, for legibility.

Caution: PC Data may not be politically correct. Its characters have been
parsed. That is, the parser looks inside this text for any XML markup. There-
fore, you cannot drop in

• Right angle brackets >
• Ampersands &
• 2 square brackets followed by a right angle bracket]]>

Why? Because the parser will figure you are issuing some kind of markup.
(Instead, use character reference or predefined entity references).

Example: Our title should be text, and we do not want
it to contain any child elements.

<! ELEMENT title (#PCDATA)>

• If the element includes one or more other elements, name them
within parentheses.

These are the children of the element. (You are saying that the element
contains other elements, but, outside of those, cannot contain random bits of
text, known as #PCDATA.)

You now need to define the content model, that is, the elements that are to be
included, the order of those elements, and the number that are required or
optional, as explained in the next few items.

Example
<! ELEMENT author (first_name, last_name)>

• If the elements must appear in a certain order, put them in
that order, separating them with commas.

Example

In the book element, we want to see the title first, then the
author, ISBN, and binding, in that order. We want all of
these, and we want them in this order.

<! ELEMENT book (title, author, ISBN, binding)>

12Making a DTD

• If you want to allow only zero or one instances of the
child element, append a questionmark.

Example
In the front matter element, we want to have only one of
each child element—or none. We do not want to have more
than one preface, acknowledgements section, or introduc-
tion. And we can live with none. We want to make sure that
the introduction, if any, follows the acknowledgements
section, if any, which comes after the preface, if any.

<!ELEMENT front_matter (preface? acknowledgements? intro?)>

• If you want to allow zero or more instances of the child
element, append an asterisk.

Example

In our academic journal, we have learned that many authors
have several different subtitles, where other authors have
none. To accommodate the professors, we tell the parser to
accept the title element as long as it has a main_title ele-
ment, and to accept any number of subtitles, or none.

<!ELEMENT title (main_title, subtitle*)>

• If you want to insist that there be 1 or more instances of
the child element, add a plus sign.

Example

In our procedure element, we insist that there be a
procedure_name, and we can live with no introduction, or
one (but no more). We insist that there be at least one step,
but we accept multiple steps.

<!ELEMENT procedure (procedure_name, introduction?, step+)>

• If you want to include one element out of a list of choices,
use a pipe to separate them.

This is an exclusive or.

Example

In the blurb element, you can have one review comment, or
one vendor description, or one feature list. You must have
one of these.

<!ELEMENT blurb (review_comment | vendor_description |
feature_list)>

• If you want to include parsed character data plus zero or
more child elements, in any order, and with any number of
occurrences (zero or more), so that all the elements are, in
fact, optional, use the mixed content model, adding the

Step-by-Step 13

elements like this:

1. Open parentheses

2. Start with #PCDATA.

3. List elements separated by pipes.

4. Close the parentheses.

5. Add an asterisk outside the closing parenthesis, to
indicate that the whole shebang can appear zero or more
times.

Example

In the new blurb, we accept the possibility that there will be
absolutely nothing. On the other hand, we also accept any
number of pieces of text, review-comments,
vendor_descriptions, and feature-lists, in any order. We are
easy.

<!ELEMENT blurb (#PCDATA | review_comment |
vendor_description | feature_list)*>

Summary of operators

Order

• Comma (,). The comma means one element must follow the next, in
this order. a, b, c.

• Pipe (|). The pipe indicates choice. You must include one of the items.

Number

• Questionmark (?). Zero or one must appear. That is, the item is op-
tional, but if it appears, it can only appear once.

• Asterisk (*). Zero or more instances are acceptable. It is optional, and
may appear several times, if you want.

• Plus sign (+). One or more should appear.

4e. End with a closing bracket >

Example: Complete element declaration.
<!ELEMENT Faq.menu (menu.title, heading+)>

14Making a DTD

Example of complete DTD and document

The parser compares the DTD with the document to
determine if the document is valid.

DTD:
<!ELEMENT cd (title, artist+, label, price, cd_description)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT artist (#PCDATA)>

<!ELEMENT label (#PCDATA)>

<!ELEMENT price (#PCDATA)>

<!ELEMENT cd_description (#PCDATA)>

VALID XML ELEMENT IN THE DOCUMENT:
<cd>

<title> Hurricano </title>

<artist> Los Nuevos </artist>

<label> La Senda </label>

<price> $14.95 </price>

<cd_description> A wonderful symphony of New Mexican
lyrics, from a leading punk fusion heavy metal group.</
cd_description>

</cd>

Challenge 0:

Create a Memo element with child elements for To, CC, BCC,
From, Date, Re, and Body.

Challenge 1:

Create a Report element that contains child elements for
author, title, category, abstract, keywords, heading1, heading2, and
paragraph.

Challenge 2:

Is this element valid, using the DTD for cd?
<cd>

<title> Hurricano </title>

<artist> Los Nuevos </artist>

<price> $14.95 </price>

<label> La Senda </label>

</cd>

Q: What’s the answer?

A: Take a look for
answers to the chal-
lenges, beginning on page
54. Remember that in
some cases, you may
have a perfectly good
answer, even if it is
different from mine.

Step-by-Step 15

Challenge 3:

Create a diagram showing what elements form part of the
book.intro element, and how they are arranged, hierarchically.
Imagine a document that has at least one of each element.

<!ELEMENT book.intro (H1, book.overview, where.am.I?,
whats.new?, general.cautions?)>

<!ELEMENT H1 (#PCDATA)>

<!ELEMENT book.overview (p+, chapter.title+)>

<!ELEMENT chapter.title (#PCDATA)>

<!ELEMENT where.am.I (p+, site.map)>

<!ELEMENT site.map (area.title+)>

<!ELEMENT area.title (p?, button)>

<!ELEMENT button (#PCDATA)>

<!ELEMENT whats.new (p+, button+)>

<!ELEMENT general.cautions (p+, button+)>

<!ELEMENT p (#PCDATA)>

16Making a DTD

5. Declare the attributes of an element.

An attribute describes an element.
An attribute is an adjective to the element's noun.

• An attribute may provide information about the information (date of
issue, author, subject).

• An attribute may be thought of as a property of the element. If the
element is a barn, the attribute called color probably has the value of red.

• An attribute may also be thought of as a field with various possible
values.

• You can declare lots of attributes for one element—a list of atrributes.

Rule of thumb
If the user must read the information, it is probably an element. If you or

software are the intended reader, you are looking at an attribute.

Not an attribute
• No, an element cannot be turned into an attribute for another element.

(If you are tempted, rethink the relationship between the two elements).
• Parts of an element should probably be made into child elements, not

attributes. In a book, chapters are child elements to the book as a
whole. Attributes for the book might be the number of copies that have
already been sold, the inhouse editor, the author's email.

Constraints
• Any one attribute can appear only once per element (as opposed to

elements, which can be defined as appearing several times).
• Attributes contain only text (without XML structure) or lists of text.
• Attributes cannot contain elements, and you cannot have a sub-

attribute of some kind.
• In the document, the value of an attribute appears inside single or

double quote pairs. Example: Description="Good"

Q: If I define attributes
in a certain order in my
DTD, do I have to use
them in that order in
the document?

A: No. Attributes may
appear in any order in
the document. If your
DTD specifies them in
the othe order A, B, C,
they may appear in any
sequence in the docu-
ment. C, A, B is perfectly
acceptable.

Q: I want to have the
same information about
an element appear
several times. Can I use
an attribute?

A: No. You can only use
the attribute once for
each instance of the
element. Workaround:
Create a child element,
and insert it into the
parent element with an
operator indicating how
many instances you will
allow, or create an
overarching element that
includes your original
element plus one or
more instances of the
new element.

XML Attribute-List Declaration

<!ATTLIST Element Name Type Default >

Step-by-Step 17

5a. Begin with <!
<!

5b. Say what you are defining (an attribute list). Keyword:
ATTLIST.

<!ATTLIST

5c. Name the element whose attribute (or list) this is.
<!ATTLIST book

5d. Name the attribute (a characteristic of the element).
<!ATTLIST book covertype

5e. Describe the type of value you can assign to this at-
tribute in the document.

<!ATTLIST book covertype CDATA

Attribute types enforce constraints on the values entered in
the document.

The constraints of a type apply to the value AFTER it has been normalized.

To normalize the value entered in the document, a parser turns the incoming
text (markup and data) into data by carrying out these steps:

1. Strips out the surrounding quotes.

2. Replaces any character references with the characters referred to. For
instance, & is replaced by the ampersand itself.

3. Replaces general entity references. If you define your initials as a general
entity reference standing for your full name, the parser replaces your initials with
your full name.

4. Replace any new line characters (paragraph return, line feed) with space
characters.

5. If the attribute type is something called tokenized, removes any leading
or trailing spaces, and reduces multiple spaces between tokens to single spaces.

What type of value to use
• For simple text (character data), use CDATA (character data). You do

need to use character references for oddball characters such as the
ampersand, and you can’t use the same kind of quotes you are using to
surround the value.

• For one of a series of values explicitly defined in the DTD, use Enumera-
tion, or Enumerated Values (a choice list with OK values).

18Making a DTD

• For a unique identifier for this element instance, use ID (Identifier).
The identifier must be a text string that follows XML rules for names.
The first character may only be a letter, an underscore, or a colon.

• For a reference to an element that has an ID attribute with the same
value as you put hee, use IDREF (Identifier reference).

• For a list of these references, separated by white spaces, use IDREFS
(an Identifier references list).

• For a name token, use NMTOKEN. That is, a piece of text that
conforms to the XML name rules, except that the first character can be
any character you could put in a name, anywhere.

• For a list of name tokens separated by white spaces, use NMTOKENS.
• For the name of a pre-defined entity, use ENTITY (a strange form from

outer space).
• For a list of predefined entities, separated by white space, use ENTI-

TIES.
• For a notation type explicitly defined elsewhere in the DTD, use NO-

TATION. Example: US Date, ISO date, jpg. You can offer a series of
choices separated by pipes.

Challenge 4:

Which type would you choose for the following attributes?
(Some attributes may have several possible types).

• One of three sizes. (No other sizes allowed).

• A Social Security Number.

• The name of an image file, previously defined as an entity
within your DTD.

• An indication of file type, chosen from several already defined
as notations.

• A unique non-numeric password.

• One or more elements, which you want to refer to.

Challenge 5:

Which type would you choose for the following attributes?
(Some attributes may have several possible types).

• One of three kinds of book cover. (Hard cover, library, or soft
cover).

• A serial number for each product.

• A pointer to a product, using its serial number.

• A code that starts with an underscore.

• The name of an entity that describes an external file.

• The date format being used.

Step-by-Step 19

• If the value will be just regular text, known gloriously as charac-
ter data (a string of text), use the CDATA type. This is the
easiest, loosest type.

Any characters recognized by your character set, such as Unicode or Ascii,
except the XML restricted characters—the ampersand, angle brackets, apostro-
phe, and double quote marks. For these, use the five built-in entities for less
than, greater than, ampersand, apostrophe and quotes— < > &
' & quot; no other markup, please!

Example declaring the "bundle" attribute for the ele-
ment called product, which can be any text. The at-
tribute is optional, or implied.

<!ATTLIST product bundle CDATA #IMPLIED>

What that would look like in a document:
<product bundle="Extreme">

Aerofrizzee

</product>

Challenge 6:

Create an element called PRODUCT, and add an attribute
called DESCRIPTION, which will contain several sentences
discussing the features and benefits of the product. Also, an at-
tribute called Price.

Challenge 7:

Create an element called Partner, and add attributes for MIS-
SION, which is usually a lengthy paragraph, and
HEADQUARTERS_CITY.

• If you want to offer a list of choices, use an enumeration (a list
of acceptable values separated by pipes)

Each value must follow the rules for a legal XML name token. That is, it
consists of one or more letters, digits, periods, hyphens, or underscores. It can
contain one colon, but not in the first position. No spaces, ampersands, angle
brackets. None of the quotes used to surround the value.

You can have as many values as you want.

Users must enter a value. Empty is not a valid value.

Tip: You can use these NameTokens for numbers, using the hyphen as a
minus sign, the period as a decimal point, and special characters for fractions.

If your later processing cannot handle space characters within a value, or other
forms of punctuation, use Name Token values so that you can verify the value
does not contain any debris like that.

20Making a DTD

Outtake from the DTD
<!ELEMENT Employee (FirstName, MiddleName, LastName) >

<!ATTLIST Employee

honorific (Mr. | Ms. | Dr. | Rev.) # IMPLIED

suffix (Jr. | Sr. | III) #IMPLIED>

What that would look like in a document:

<Employee honorific="Rev." suffix="III">

<FirstName>George</FirstName>

<MiddleName>Vidal</MiddleName>

<LastName>Blair</LastName>

</Employee>

Challenge 8:

Create an element called employee, and an attribute called
STATUS, which will allow only the values fulltime, parttime, and
contractor.

Challenge 9:

Create an element AGENT with the attribute SECURITY,
which can take only the values None, Secret, Top_Secret, and
Eyes_Only.

• If you want the value to be a unique identifier, use ID.
The value for this attribute must be unique, for each element in a document.

(No element may have more than one ID attribute, and the value for each
element's ID attribute is unique, within the document).

Often you turn to software to generate these identifiers, but you might insist
on clerks entering, say, a person’s badge ID, a Draft code, or a Student ID--if
these begin with a letter.

The ID lets you refer to a specific part of the document. You can use it as the
target of a link (using IDREF), or to set up a one-to-one relationship between
two elements, in different documents, to be used by a database. To a relational
database, the ID is the primary key for the row.

Caution: to save your sanity, do not use the letters ID as part of any other
kind of attribute's name.

The value must begin with a letter or underscore, followed by zero or more
letters, digits, periods, hyphens or underscores. You can have one colon, but not
in the first position. Note: If you are drawing IDs from a relational database’s
primary keys, make sure that those values meet the XML standards.

The ID attribute must have a default of #REQUIRED or #IMPLIED. It
cannot be #FIXED (because then it wouldn"t be unique when you created a
second instance of the element in the same document), and there can be no

Step-by-Step 21

default value (for the same reason). If you intend to link to the element, its ID
value is REQUIRED.

<!ATTLIST person badge ID #REQUIRED>

What that would look like in a document:

<person badge="ss307-55-6675">

Herbert Walker

</person>

Challenge 10:

Create an element COURSE with an attribute for a course
identifier, called the code.. Each course code is unique, and begins
with a 3-letter code for the department. For instance, an English
class in Shakespeare, English 400, would have the code Eng400.

Challenge 11:

Create an element CONTRACT with an attribute being the
internal contract number, which beigns with the text “CT.”

• If you want the value to be a reference to an element that has
an ID attributre with the same value, use IDREF. For several, use
IDREFS.

The only valid entry for an IDREF will be an ID that exists somewhere
within the same document.

If you are depending on software to manipulate the IDREFs, make them
required, because if they are left out, the parser looks to any defaults it can find at
the document level.

An ID is the target of a link. You can have multiple IDREFs all pointing to
the same element's ID.

If you have a list of IDREFS, separate them with white spaces.

Example of IDREF attribute

In the author element, we want to be able to link to a bio,
which we expect to be somewhere else in the same document.

<!ATTLIST author bio IDREF #REQUIRED>

What that would look like in a document:
<author bio="auth10">

William Shakespeare

</author>

Example of IDREFS attribute
<!ATTLIST product

Recommend IDREFS #REQUIRED

SKU ID #REQUIRED

>

22Making a DTD

What that would look like in a document, pointing to
the IDs B8997, B8976, and A5467.

These multiple values, separated by spaces, identify targets of
potential links.

<product SKU="A6789" Recommend="B8997 B8976 A5467">

Whirlybirdarama

</product>

Challenge 12:

Create an element called HOWTO, which may have a number
of TIP elements referenced. Also create a TIP element. Each TIP
has a unique TIP_CODE.

Challenge 13:

Create an element called SCENT, with an attribute that points
to the IDs of all the products that contain that scent.

• If the value will be limited to characters that are valid for XML
names (letters, digits, period, dash, underscore, colon, alter-
nate quotes)… use NMTOKEN. For several, use NMTOKENS.

The word name was already taken, so for this kind of value, the XML squad
came up with the term Name Token.

You can’t put a colon first, but you can put any other valid name character
first: letters, digits, periods, hyphens or underscores. You can have one colon.
Remember: the white space between items in the plural version, NMTOKENS,
gets stripped out by the parser.

NMTOKENs are more liberal than other XML names, but impose some
validation, compared to CDATA, which is wild and crazy. Compare:

• Most restricted: An enumerated list, because you can only use those
specific values.

• Moderately restricted: Name Tokens, which follow the rules for XML
names (except that any name character can appear at the start of the
name token), while allowing you to make up any content you want.

• Loose: CDATA, which has no limits on characters, or content (except
that even here you cannot use the ampersand, angle brackets, and so
on.)

Caution: a parser does not separate the various Name Tokens in a list, so the
receiving application (the browser, for instance) has to make sense of them.

Rule of thumb: Most people avoid Name Tokens, going for either CDATA or
enumerated lists.

Example of a Name Token being used for values
beginning with a number.

<!ELEMENT BOOK (#PCDATA)>

<!ATTLIST ISBN NMTOKEN #REQUIRED>

Step-by-Step 23

That would show up in the document like this:
<BOOK ISBN="8-66768-999-2">The Best Thing on TV</BOOK>

Example of NMTOKENS set up to accept a series of
values.

<!ELEMENT SUSPECT (#PCDATA)>

<!ATTLIST SUSPECT AKA NMTOKENS #IMPLIED>

That would show up in the document like this:

<SUSPECT AKA="Moe Tiny Razor">Johnny Moses</SUSPECT>

Challenge 14:

Create an element called PART and a required attribute to
contain the date that part was created, in the format 2001-06-31.

Challenge 15:

Create an element called CONFIRMATION with a required
attribute for the unique number of the message, which comes in
the form _000909.

Challenge 16:

Identify the likely reasoning behind the attribute types in the
following declarations:

<!ELEMENT INVENTORY (ITEM*)>

<!ELEMENT ITEM (#PCDATA)>

<!ATTLIST ITEM

Code ID #REQUIRED

Description CDATA #IMPLIED

Price NMTOKEN #REQUIRED

Suggestion IDREFS #IMPLIED

Featurelist IDREF #REQUIRED>

Discover if any parts of the following outtake from a document
using this DTD are invalid:

<INVENTORY>

<ITEM Code="a21a00" Price="14.55" Suggestion="a31a01 a42b21">

Palm VII Windscreen </ITEM>

<ITEM Code="a21a00" Price="79.95" Description="A tornado in
your hand, a blizzard blasting out of four sturdy blades, your personal
fan. Just the thing for your trip to the beach. Don"t bother to go in
the water. Just turn on your Buzzer." Suggestion="a55c66 a65a43"
Featurelist="FL81">The Buzzer</ITEM>

</INVENTORY>

24Making a DTD

• To refer to an external file (known to XML as an unparsed en-
tity) use the ENTITY type. For a list of several unparsed entities,
separated by white space, use ENTITIES.

If you need to link to, refer to, or include objects outside this document, such
as images, CGI scripts, text files—stuff that should not be fed through the
parser—you can use the attribute type ENTITY. Its full name is: unparsed
entity.

The value must be a legal XML name.

To use an ENTITY type, you have to take these actions:

1. Declare a notation (for instance, png).
<!NOTATION png SYSTEM "http://www.theprices.com/apps/
PNG_Viewer.exe">

2. Declare an entity (showing the path to the other file).
Example: Buddy.

<!ENTITY Buddy SYSTEM "http://www.theprices.com/Images/
Buddy.png" NDATA png >

3. Declare an element, with the attribute of the type EN-
TITY.

<!ELEMENT employee (#PCDATA)>

 <!ATTLIST employee photo ENTITY #IMPLIED>

4. Use the entity as a value when you create an instance of
the element.

In the document, that might appear as:

<employee photo="&Buddy;">Buddy Llorona</employee>

Note: For ENTITIES, you can include several entities within the quotation
marks, separated by spaces.

Example of ENTITY attribute type

Here the notation and entity called panorama have already
been declared in the DTD:

<!ELEMENT image EMPTY>

 <!ATTLIST image source ENTITY #REQUIRED>

In the document the link to the entity called panorama
might look like this:

<image source="panorama" />

Step-by-Step 25

Example of ENTITIES attribute type

Here the notation and entities called cityscape, bridge, and
Eiffel have already been declared:

<!ELEMENT image EMPTY>

 <!ATTLIST image source ENTITIES #REQUIRED>

In the document the links to 3 of these entities:
<image source="cityscape bridge Eiffel" />

Challenge 17:

Assume that elsewhere in your DTD you have declared that
png, gif, and jpg are valid notations, and that you have declared the
following pictures as entities: OurLogo, OurLogosmall,
OurLogoBW.

Declare an element called LOGO, which is empty, but has as
an attribute a pointer to one of these entities. Then write the part
of the document that invokes the small logo.

Challenge 18:

Assume that elsewhere in your DTD you have declared that
PDF, htm, and html are valid notations, and that you have de-
clared the following files as entities: WhitePaper001,
WhitePaper002, and WhitePaper003. Declare an element called
WHITEPAPER, and an attribute pointing to an entity. Write the
part of the document that points toWhitePaper001.

• If your browser or later applications need to know what kind of
files these external unparsed entities are, use the NOTATION
type.

This allows you to offer a choice list of possible notations, with pipes between
them. The parser will make sure that you have declared the notation type in the
DTD. (We"ll talk about declaring a notation later).

Example
<!ELEMENT picture EMPTY>

<!ATTLIST picture

 src CDATA #REQUIRED

 type NOTATION (png | gif | jpg) #IMPLIED

>

 Document
<picture src="http://www.theprices.com/Images/noah.jpg"
type="jpg">

26Making a DTD

Challenge 19:

Assume that you have already declared that you recog-
nize png, gif, and jpg as notations. You have also declared
an ENTITY called JPRICE, which points to Jon.jpg.
Create an element called Face, with attributes for a Social
Security Number, a student number, an image source, and
its file format. Then make up a part of a document with
my face.

Challenge 20:

Assume that you have already declared that you recog-
nize bmp, tif, png, gif, and jpg as notations for filetypes.
You have also declared an entity named GUERNICA
pointing to a bitmap of the painting. Create an element
called Painting, which has no text, but has attributes for a
unique accession number, a unique inventory number, an
image source, and its file format. Then make up a part of
a document for Picasso's Guernica.

5f. Say whether the attribute content is required. (Default
declaration).

• If the content is required, put #REQUIRED

Example
<!ELEMENT citation (#PCDATA)>

<!ATTLIST citation reference ENTITY #REQUIRED>

<!ENTITY Newsweek SYSTEM "http://www.newsweek.com/
index.htm" NDATA htm>

In the document:
<citation reference="Newsweek">The Internet now accounts for
8% of all retail sales.</citation>

• If the attribute must always have a particular value, put #FIXED
and the value in quotes.

Example

To tell visiting robots that a heading is a title element it is
looking for, you might write:

<!ELEMENT heading #PCDATA>

<!ATTLIST heading title-element CDATA #FIXED "TITLE-ELE-
MENT">

If your attribute is a list
of enumerated values,
but one of them is the
default, you can put that
in quotes, after the
parentheses:

<!ATTLIST VOTE
CHOICE (yes | no)
“yes” >

That implies that the
default is required.

Step-by-Step 27

• If a value is not required, but optional, and may or may not
appear, put #IMPLIED

Use if the value is not always available. Make sure that your users will not
mind if the value is missing, or will have a good idea what that means.

Example

To insert the size of a file, if known, you could write:

<!ELEMENT file #PCDATA>

<!ATTLIST file size CDATA #IMPLIED>

5g. End with a closing bracket >
<!ELEMENT Faq.menu (menu.title, heading+)>

 <!ATTLIST Faq.menu anchor ID #REQUIRED>

Use attributes to identify elements that might be targets
for links, or anchors (hot spots).

<!ELEMENT CONTENT (ARTICLE+)>

<!ELEMENT ARTICLE (HEADLINE, BYLINE, LEAD, BODY, NOTES)>

<!ATTLIST ARTICLE

AUTHOR CDATA #REQUIRED

EDITOR CDATA #IMPLIED

DATE CDATA #IMPLIED

EDITION CDATA #IMPLIED

ARTICLE_CODE ID #REQUIRED>

<!ELEMENT HEADLINE (#PCDATA)>

<!ATTLIST HEADLINE TARGET ID #REQUIRED>

<!ELEMENT BYLINE (#PCDATA | EMAIL)*>

<!ELEMENT LEAD (#PCDATA)>

<!ELEMENT BODY (#PCDATA)>

<!ELEMENT NOTES (#PCDATA)>

<!ELEMENT EMAIL (#PCDATA)>

<!ATTLIST EMAIL biolink IDREF #REQUIRED>

Content

Article

Headline

Byline

Lead

Body

Notes

Email

PCDATA

28Making a DTD

Challenge 21:

Create the part of a DTD that describes the elements that are
pointed to by a menu. The menu offers links to ServiceChat,
ContactUs, and PrivacyPolicy

Each element must contain its own Heading, and the text of
that heading will appear on the menu, so the heading itself is a
reasonable target for a link.

Plus, each element contains a Body, followed by a few optional
SeeAlso elements at the end of each section. Each SeeAlso element
points to one other element elsewhere on the site.

Challenge 22:

Create the part of the DTD for the elements that will be
pointed to by a menu that lists Overview, Description, and De-
tails.

Each element must contain its own Heading element, and each
heading will be a target for a link from the menu. In addition to
the Heading, each element has a Body, with a few optional SeeAlso
links at the end of each section. Each SeeAlso element points to
one other element, elsewhere in the site.

Challenge 23:

Create a document that follows the partial DTD above, for
CONTENT, with one ARTICLE. The theme is beach trips and
vacations on the shore. You do not have much room in the Body:
150 words, max, according to the styleguide.

Extended Example
Defining elements and attributes for a command reference:

<!ELEMENT reference (languagecommandgroup+)>

<!ELEMENT languagecommandgroup (title, overview,
command.description+)>

<!ELEMENT title (#PCDATA)>

<!ATTLIST title target ID #REQUIRED>

<!ELEMENT overview (#PCDATA | glossary.term)*>

<!ELEMENT command.description (title, command.name,
command.def, command.syntax, command.param, command.prereq,
command.process, command.messages?, command.status?,
command.stats, command.results, command.example,
command.warnings?, command.shortcuts?, see.also?)>

<!ATTLIST command.description target ID #REQUIRED>

<!ELEMENT command.name (#PCDATA)>

Step-by-Step 29

<!ELEMENT glossary.term (#PCDATA)>

<!ATTLIST glossary.term anchor IDREF #REQUIRED>

<!ELEMENT command.def (#PCDATA | glossary.term)*>

<!ATTLIST command.def target ID #REQUIRED>

<!ELEMENT command.syntax (#PCDATA)>

<!ATTLIST command.syntax target ID #REQUIRED>

<!ELEMENT command.param (#PCDATA)>

<!ATTLIST command.param target ID #REQUIRED>

<!ELEMENT command.prereq (#PCDATA | command.prereq.xref |
glossary.term)*>

<!ATTLIST command.prereq target ID #REQUIRED>

<!ELEMENT command.prereq.xref (#PCDATA)>

<!ATTLIST command.prereq.xref anchor IDREF #REQUIRED>

<!ELEMENT command.process (#PCDATA | glossary.term)*>

<!ATTLIST command.process target ID #REQUIRED>

<!ELEMENT command.messages (message.explanation+)>

<!ATTLIST command.messages target ID #REQUIRED>

<!ELEMENT message.explanation (#PCDATA | message | diagnosis |
glossary.term)*>

<!ATTLIST message.explanation target ID #REQUIRED>

<!ELEMENT message (#PCDATA)>

<!ELEMENT diagnosis (#PCDATA)>

<!ELEMENT command.status (#PCDATA | glossary.term)*>

<!ATTLIST command.status target ID #REQUIRED>

<!ELEMENT command.stats (#PCDATA | glossary.term)*>

<!ATTLIST command.stats target ID #REQUIRED>

<!ELEMENT command.results (#PCDATA | glossary.term)*>

<!ATTLIST command.results target ID #REQUIRED>

<!ELEMENT command.example (#PCDATA | glossary.term)*>

<!ATTLIST command.example target ID #REQUIRED>

<!ELEMENT command.warnings (warning.explanation+)>

<!ATTLIST command.stats target ID #REQUIRED>

<!ELEMENT warning.explanation (#PCDATA | warning |
glossary.term)*>

<!ATTLIST warning.explanation target ID #REQUIRED>

<!ELEMENT warning (#PCDATA)>

<!ELEMENT command.shortcuts (#PCDATA)>

<!ATTLIST command.shortcuts target ID #REQUIRED>

<!ELEMENT see.also (#PCDATA | xref)*>

30Making a DTD

<!ELEMENT xref (#PCDATA)>

<!ATTLIST xref anchor IDREF #REQUIRED>

This code defines an element called Reference, which includes one or more
Language Command Groups. Each Language Command Group has a title, an
overview, and one or more command descriptions.

Each command description must include the command name, a functional
definition, the command syntax, parameters, prerequisites, a processing descrip-
tion, statistics, results, and an example.

In addition, the command description may have zero or one of each of the
following: a description of messages, status indicators, warnings, and possible
shortcuts. There may or may not be a single See Also element at the end.

Language Command Reference

Language Command Group

Overview of Group of
Commands

Command Description

Command Name

Functional Definition

Syntax

Parameter

Prerequisite

Processing

Messages

Status Indicators

Statistics

Results

Example

Warnings

Shortcuts

See Also

Step-by-Step 31

Challenge 24:

Which elements of the command.description are required?

What is included in the message explanation?

Which elements could serve as pointers to other elements?

6. Reuse elements (and their attributes).

Selected snippets from various element definitions:
<!ELEMENT documentation.chapter (chapter.title, chapter.menu,
chapter)>

<!ATTLIST documentation.chapter target ID #REQUIRED>

<!ELEMENT chapter.title (#PCDATA)>

<!ELEMENT chapter.menu (heading+)>

<!ELEMENT heading (#PCDATA)>

<!ATTLIST heading anchor ID #REQUIRED>

<!ATTLIST heading target IDREF #REQUIRED>

<!ELEMENT help.menu (menu.title, heading+)>

<!ATTLIST help.menu target ID #REQUIRED>

<!ELEMENT menu.title (#PCDATA)

<!ELEMENT Faq.menu (menu.title, heading+)>

<!ATTLIST Faq.menu target ID #REQUIRED>

<!ELEMENT phone.menu (menu.title, heading+)>

<!ATTLIST phone.menu target ID #REQUIRED>

<!ELEMENT chapter.map (menu.title, heading+)>

<!ATTLIST chapter.map target ID #REQUIRED>

<!ELEMENT procedure (heading, intro?, step+)>

<!ATTLIST procedure target ID #REQUIRED>

<!ELEMENT index (index.section+)>

<!ATTLIST index target ID #REQUIRED>

<!ELEMENT index.section (index.section.head, index.term+)>

<!ELEMENT index.section.head (#PCDATA)>

<!ATTLIST index.section.head target ID #REQUIRED>

32Making a DTD

<!ELEMENT index.term (#PCDATA | heading)*>

<!ATTLIST index.term anchor IDREF #REQUIRED>

<!ELEMENT paragraph (#PCDATA | glossary.term | xref)*>

<!ATTLIST paragraph target ID #REQUIRED>

<!ELEMENT glossary.term (#PCDATA)>

<!ATTLIST glossary.term anchor IDREF #REQUIRED>

<!ELEMENT xref (#PCDATA)>

<!ATTLIST xref anchor IDREF #REQUIRED>

<!ELEMENT see.also (title, heading+)>

<!ELEMENT search.result (description, heading)>

<!ELEMENT description (#PCDATA)>

Object of class Procedure:
How to Copy a

Frame of Animation

Chapter
Menu

Chapter
Map

Index
(Rewritten

title)

Running Text Reference
(May refer obliquely, or quote

heading exactly)

See Also List Reference

Search
Results:

Low-Level
Help
Menu

FAQ
Menu

Phone
Support
Menu

Heading Heading Heading Heading

Heading
Heading

Heading

HeadingHeading

Step-by-Step 33

7. Declare entities.

Declaring an entity is like defining a piece of shorthand, a
macro, or an auto-text item.

An entity is a box with a label on it: the thing could be a long piece of
boilerplate prose, or it could be an object outside of the document, usually some
kind of file, information coming from a database, or data generated by another
program. An entity is just a bunch of stuff.

When the parser meets an entity in your document, it looks for help to your
declaration in the DTD, then it expands the entity, by going to the substitute
text or the file, bringing that content back, and dropping it into the page where
the entity appeared. We say that it has included the entity's content, or that the
entity reference has been replaced by the entity's content.

Use entities if…

• You want to put often-used text into a single location, so it will always appear
with the same spelling and punctuation throughout your documents.

• You want to reuse modules of your information in many different docu-
ments, and intend to identify each one as an entity, to be called when
needed.

• You want to keep changeable items such as product names, bundle names,
slogans, logos in a single location so that when you update them, the changes
spread throughout your document or site, and you do not have to hunt
down every instance, to correct each one.

• You have boilerplate such as legal notices, safety warnings, FDA alerts that
must be included word for word, and you don’t want anyone but lawyers
tinkering with them.

• You want to be able to bring in pictures and multimedia materials.

Entities can be external or internal, parsed or unparsed,
general or parameter.

••••• External entities exist outside the document. You are pointing to a file or
information outside of the document, and asking the parser to fetch it.

••••• Internal entities are declared within the DTD, and appear in a quoted
string.

••••• Parsed entities are parsable, that is, they include well-formed content, which
is the replacement text, and the parser can review it without hiccuping. You
declare the entity in the DTD, giving it a name, and then in the document,
use that name as an entity reference. Because they can be parsed, a parsed
entity can include markup, such as an element as well as character data.

34Making a DTD

••••• Unparsed entities are really impossible to parse; they are external files, and
they are not XML files. In an element's attribute we use an ENTITY type,
and point to the entity. The browser fetches the image or data, and inserts it
in that element. The unparsed entity can contain any kind of data, but it is
usually not XML data. The parser does not expect to be able to handle this
data, but passes along the entity's name to the application such as the
browser, which can open the file.

••••• General entities are usable within any XML document. They can be parsed
or unparsed; they can include any well-formed content.

••••• Parameter entities can only be used in a DTD.

••••• The document itself is considered the highest level entity. It is the docu-
ment entity. You do not have to declare it, though; in fact, it does not have a
name, and cannot be referenced. It is the entity in which the XML declara-
tion and the DOCTYPE declaration take place. In essence, the document is
a file.

XML does not allow the three types crossed out. As a result, there are only 5 legit entity types.

entity
general parameter

internal external internal external

parsed unparsed parsed unparsed parsed unparsed parsed unparsed

Step-by-Step 35

7a. Declaring a general internal parsed entity
Generally, this is shorthand: an abbreviation or short term for which you

provide the full text in the DTD.

• If you want to be able to use the entity in any XML document, you need a
general entity.

• If you want to declare the entity inside the DTD, giving its replacement text
there, you need an internal entity.

• If you need to include an element, or some other piece of XML markup, and
you want to validate that the replacement text is well-formed, you need a
parsable entity.

1. Start with <!ENTITY.

2. Give the entity a name, beginning with a letter or an under-
score, followed by zero or more letters, digits, periods, hy-
phens, or underscores.

Oddly, the entity can have the same name as an element or attribute, because
that would only confuse a human being.

3. Give the entity a value, in quotes—it's a quoted string, or a
literal. The rules:

• You have to surround the value with two apostrophes or two double quotes.

• The value cannot contain the apostrophe or double quotes you are using to
delimit the value.

• Your value cannot include the ampersand character except at the beginning
of a general entity reference or a character reference. Also, you can’t use the
percent.

• The value must meet the standards for the spot where you intend to put the
entity. That is, if you are going to put it inside an element, it must contain
items that can be dropped into that particular element. Or if you intend to
put the entity within an attribute, it must meet the standards for attribute
values. You may include markup and refer to other entities.

ENTITY<! Name of
entity

Text
and/or
markup" ">

general internal parsed entity

36Making a DTD

4. Stop with an angle bracket >

Example of a general internal parsed entity:

My initials will stand for my full name.

<!ENTITY JP

"Jonathan Reeve Price">

Document:
<BIO>

&JP; hails from an adobe house near the Rio Grande.

</BIO>

Display:
Jonathan Reeve Price hails from an adobe house near the Rio
Grande.

Example of a general internal parsed entity
An element TVSALEITEM can have parsed character data,
including entity references. The general internal parsed
entity, gizmo, provides some text, and includes the element
BLURBLINE.

<!ENTITY gizmo

"The Amazing Gizmo

<!BLURBLINE>It slices. It dices. It cleans windows.</
BLURBLINE>">

Document
<TVSALEITEM>

&gizmo;

Buy this today for 10 percent off.

</TVSALEITEM>

Display:
The Amazing Gizmo.

It slices. It dices. It cleans windows.

Buy this today for 10 percent off.

Challenge 25:

Which of the following could be declared as a general
internal parsed entity?

� A piece of boilerplate that you want to ensure will
remain unchanged wherever it appears.

Step-by-Step 37

� A standard text that includes an element.

� An image stored on the same server as the DTD.

� A stretch of text that you do not want parsed, because it
must include characters that would disturb the parser.

7b. Declaring a general external parsed entity
Generally, this is a pointer to an external file that can be successfully parsed.

• If you want to be able to use the entity in any XML document, you need a
general entity.

• If you want to point to an external file that contains items that can legally be
inserted into an element (characters, nested elements, so on), you need an
external entity.

• If you need to include an element, or some other piece of XML markup, and
you want to validate that the replacement text is well-formed, you need a
parsable entity.

1. Start with <!ENTITY

2. State the name of the entity.

3. Put in SYSTEM to indicate you are about to give a specific
location for the external file.

4. In single or double quotes put the location. (The system
literal).

The location gives a full URL, or a relative URL (if in the same directory).

Example of a general external parsed entity

We point to another document called Benefits.xml.

<!ELEMENT VIDEO ANY>

<!ENTITY BEN SYSTEM "http://www.theprices.com/benefits.xml">

Document
<VIDEO>

This great new exercise video has tons of benefits for health-
conscious teens:

ENTITY<! Name of
entity

Location of
the file" ">

general external parsed entity

SYSTEM

38Making a DTD

&BEN;

</VIDEO>

Caution: the XML spec does not require the parser to validate an XML
document. If the processor does not validate, it ignores declarations of external
parsed entities, whether general or parameter. They show up only as links, for
the user.

7c. Declaring a general external unparsed entity
This is a pointer to an external file that can NOT be successfully parsed.

That file can contain any kind of data, as long as it matches the description you
give when you set up a NOTATION for it.

• If you want to be able to use the entity in any XML document, you need a
general entity.

• If you want to point to an external file that contains items that can legally be
inserted into an element (characters, nested elements, so on), you need an
external entity.

• If the other file contains material that cannot be parsed, such as an image,
video, or sound, you are dealing with an unparsable entity. Material that
cannot be parsed cannot go in the DTD, so it is general; and must be
outside the DTD, so it is external. So unparsed implies the other two terms.

1. Start with <!ENTITY

2. State the name of the entity.

3. Put in SYSTEM to indicate you are about to give a specific
location for the external file.

4. In single or double quotes put the location. (The system
literal).

The location gives a full URL, or a relative URL (if
in the same directory).

5. Add NDATA to warn the parser that the file contains

ENTITY<! Name of
entity

Location of
the file" "

general external unparsed entity

SYSTEM NDATA Notation
Name >

Step-by-Step 39

unparsable data.

6. Put in the name of the notation that file uses (its file
format or application, previously defined as a NOTATION).

Example of a general external unparsed entity

We want to refer to a gif file with the logo for a Non-
Governmental Organization.

<!ELEMENT NGO (NAME, DESCRIPTION, LOGO)>

<!ELEMENT NAME (#PCDATA)>

<!ELEMENT DESCRIPTION (#PCDATA)>

<!ELEMENT LOGO EMPTY)>

<!ATTLIST LOGO Source ENTITY #REQUIRED>

<!NOTATION GIF SYSTEM "ShowGif.exe">

<!ENTITY Ruckuslogo SYSTEM "http://www.theprices.com/
Ruckus.gif" NDATA GIF>

Document
<NGO>

<NAME>Santa Fe Growers Coop</NAME>

<DESCRIPTION>A cooperative bringing together consumers and
farmers in the Santa Fe area, producing farmers" markets and
wholesale selling to local groceries.</DESCRIPTION>

<LOGO Source="&Ruckuslogo;"/>

</NGO

Challenge 26:

Which of the following should be declared as a general external
parsed entity, and which should be considered a general external
unparsed entity?

� A video clip.

� A file containing raw text plus an element marked up in
XML.

� An image in png format.

� A text file containing company names.

� Another page of XML.

40Making a DTD

7d. Declaring a parameter internal parsed entity
Sometimes you want to use the same markup text in several different places

within a DTD. This special kind of entity is thought of as a parameter of the
DTD, hence the ugly name parameter entity. It includes markup declarations.

• If you want to be able to use the entity in a DTD, you need a parameter
entity.

• If you are going to declare the entity within the DTD, you need an internal
entity.

• If the entity contains material that can be parsed, you are dealing with an
parsable entity. Because parameter entities aim to go in DTDs, they must be
parsable.

1. Start with <!ENTITY.

2. Insert a percent sign %.

3. Give the entity a name.
The name must begin with a letter or an underscore, followed by zero or

more letters, digits, periods, hyphens, or underscores.

The entity can have the same name as an element or attribute or a general
entity, because that would only confuse a human being. On the other hand, for
humans, try something different.

4. Give the entity a value, in quotes—it's a quoted string, or a
literal. The rules:

• You have to surround the value with two apostrophes or two double quotes.

• The value cannot contain the apostrophe or double quotes you are using to
delimit the value.

• Your value cannot include the percent sign. You cannot use the ampersand
character except at the beginning of a general entity reference or a character
reference.

• The value must meet the standards for the spot where you intend to put the
entity. You can put this entity into the DTD, but not inside some other
markup declaration. So it can contain element type declarations, attribute
list declarations, general entity declarations, notation declarations, processing

ENTITY<! Name of
entity Value" "

parameter internal parsed entity

>%

Step-by-Step 41

instructions, or comments. You cannot include a parameter declaration that
appears later in the DTD and its reference. (There are a few exceptions to
this general rule. See Section 4 of the XML spec at http://www.w3.org/TR/
REC-xml).

5. Stop with an angle bracket >

Example of a parameter internal parsed entity:
<!ENTITY %team

"<!- - members of the team - ->

<!ELEMENT MEMBER (#PCDATA)>

<!ATTLIST MEMBER department CDATA ‘marcomm’>"

>

…

<!ELEMENT ZEBRA (#PCDATA)>

%team;

The last two lines are the equivalent of:

<!ELEMENT ZEBRA (#PCDATA)>

<!- - members of the team - ->

<!ELEMENT MEMBER (#PCDATA)>

<!ATTLIST MEMBER department CDATA "marcomm">

Challenge 27:

Create a parameter internal parsed entity to be used in
alerting developers to the status of an element being de-
clared within the DTD. The entity is called TK and con-
tains a comment saying, "Incomplete declaration. The specs
are still to come."

Challenge 28:

Create a parameter internal parsed entity to be used in
identifying the status of an element being declared within
the DTD. The entity is called TBD and contains a com-
ment saying, "To be determined. This dummy element is
just a placeholder, for now."

When using a param-
eter internal parsed
entity in your DTD, you
precede it with the
percentage sign, and
end with the semico-
lon.

Example from the
DTD for XHTML:

<!- - Core attributes
common to most
elements

id document-wide
unique id

class space separated
list of classes

style associated style
info

title advisory title/
amplification - ->

<!ENTITY %coreattrs

“id ID #IMPLIED

class CDATA #IMPLIED

style %StyleSheet;
#IMPLIED

title %Text; #IMPLIED” >

From now on, whenever
the team wants to drop
in the core attributes,
instead of typing them
all out, using the entity
%coreattrs; will tell the
software to put them in
automatically.

Note: Two entities,
%StyleSheet; and %Text;
have already been
defined, and are here
reused. To make cross
reference easier, the
W3C turns each of
these entities into a link,
so you can click to find
out what it stands for.

42Making a DTD

7e. Declaring a parameter external parsed entity
You are pointing to a file that contains complete markup declarations of the

types allowed in a DTD, which will be drawn back into the current DTD. You
might use this entity if you create a series of DTDs for different departments,
and sometimes put together two or three, and sometimes a different set. In that
case, you would build several DTDs using parameter external parsed entities to
call whatever files you need, essentially assembling several DTDs as needed.

• If you want to be able to use the entity in the DTD, you need a parameter
entity.

• If you want to point to an external file that contains items that can legally be
inserted into a DTD, you need an external entity.

• To be usable within the DTD, the content of this external file must be
parsable.

1. Start with <!ENTITY

2. Put a percent % to indicate this is a parameter entity.

3. State the name of the entity.

4. Put in SYSTEM to indicate you are about to give a specific
location for the external file.

5. In single or double quotes put the location. (The system
literal).

The location gives a full URL, or a relative URL (if in the
same directory).

6. Close with an angle bracket.>
Note: parameter entities cannot be used in the document itself. They just

show up as weird text beginning with a percent sign.

General entity references almost always appear in the document. One
exception: if an attribute declaration includes a general entity in the DTD.

ENTITY<! Name of
entity

Location of
the file" ">

parameter external parsed entity

SYSTEM%

Step-by-Step 43

8. Declare a notation to identify the file for-
mats of external unparsed entities.

Name the file format so you can refer to it in attributes,
unparsed entity declarations, and processing instructions.

These are times when you may need to alert an application or the parser what
kind of file you are pointing to, or hoping to have processed.

Because we do not want the XML parser to bother with these files, we call
them unparsed entities. Really, we should call them unparsable, but that would
be unpronounceable.

The rest of the declaration points to the documentation on that file format, a
formal spec, or, best, an application that can handle objects that have been
created in this notation.

1. Start with <!NOTATION

2. Give your notation a name.

3. Say whether the location is SYSTEM or PUBLIC.
If you are giving a specific location, use SYSTEM. If you
believe the application can find the well-known location, use
PUBLIC, and cross your fingers.

4. For SYSTEM, give one location. For PUBLIC, give the public
location, then, just in case, give a specific location, too. Put
the location(s) in quotes.

5. Close with angle bracket >

Example of Notation declaration

If you expect to point to a Word document, you might
mention Ms Word, as a "helper application."

<!NOTATION doc SYSTEM "http://www.theprices.com/word.exe">

Example of notation for date formats

If you have a date element that may have either ISO or EU
date formats…

NOTATION<! Name of
notation

SYSTEM/
PUBLIC Location" ">

Notation Declaration

44Making a DTD

<!NOTATION ISODATE SYSTEM "http://www.iso.ch/
date_specification">

<!NOTATION EUDATE SYSTEM "http://www.eu.eu/
date_specification">

<!ELEMENT TODAYSDATE (#PCDATA)>

<!ATTLIST TODAYSDATE date-format NOTATION (ISODATE |
EUDATE) #REQUIRED)>

Challenge 29:

Create a PHOTO element that will be receiving
images in either jpg or bmp formats.

Challenge 30:

Create a STANDARD element that will be receiving
files in doc, htm, html, txt formats.

9. Add comments for humans, only.
Use comments for headings or notes to yourself, your team, or some other

human being. Once you are inside a comment, you can write any darn thing you
want. The XML parser ignores the comments. The comment is set up just as it
would be within an XML document.

Comment

Text<!-- -->

9a. Start the comment with <!--.

9b. Write anything you want.

9c. End the comment with -->.
<!- -File Name: booklist.xml- ->

<!--This is a first draft for internal circulation only.-->

<!--Date: July 4, 2001 -->

Caution: Do not try to
put a double hyphen
inside the comment!

Step-by-Step 45

Super Challenge: Writing to a DTD
Following this DTD, produce a draft of the catalog, containing only one product

description—for a table saw named The Ferret Table Saw, part number T765, from
the Milwaukee plant, currently back-ordered.

The saw weighs 532 pounds; uses 220 volt current; and meets OSHA standards.

The options include the finish, which is Metal, but no adapter. There is no case.

The Manufacturer’s Suggested Retail Price (MSRP) is $1577. The wholesale price
is $835. Average street price is $1199. Shipping costs average $185. Note that this is
an excellent buy.

Please make up locations for the DTD and the stylesheet.

<!DOCTYPE CATALOG [

<!ELEMENT CATALOG (PRODUCT+)>

<!ELEMENT PRODUCT (DESCRIPTION, SPECIFICATIONS+, OP-
TIONS?, PRICE+, NOTES?)>

<!ATTLIST PRODUCT NAME CDATA #IMPLIED>

<!ATTLIST PRODUCT CATEGORY (HandTool | Table | Shop-Profes-
sional) “HandTool”>

<!ATTLIST PRODUCT PARTNUM CDATA #IMPLIED>

<!ATTLIST PRODUCT PLANT (Pittsburgh | Milwaukee | Chicago)
“Chicago”>

<!ATTLIST PRODUCT INVENTORY (InStock | Backordered | Discontin-
ued) “InStock”>

<!ELEMENT SPECIFICATIONS (#PCDATA)>

<!ATTLIST SPECIFICATIONS WEIGHT CDATA #IMPLIED>

<!ATTLIST SPECIFICATIONS POWER CDATA #IMPLIED>

<!ELEMENT OPTIONS (#PCDATA)>

<!ATTLIST OPTIONS FINISH (Metal | Polished | Matte) “Matte”>

<!ATTLIST OPTIONS ADAPTER (Included | Optional | NotApplicable)
“Included”>

<!ATTLIST OPTIONS CASE (HardShell | Soft | NotApplicable)
“HardShell”>

<!ELEMENT PRICE (#PCDATA)>

<!ATTLIST PRICE MSRP CDATA #IMPLIED>

<!ATTLIST PRICE WHOLESALE CDATA #IMPLIED>

<!ATTLIST PRICE STREET CDATA #IMPLIED>

<!ATTLIST PRICE SHIPPING CDATA #IMPLIED>

<!ELEMENT NOTES (#PCDATA)>

46Making a DTD

<!ENTITY AUTHOR “Bob Ferret”>

<!ENTITY COMPANY “Ferret Equipment”>

<!ENTITY EMAIL “rf@ferretequipment.com”>

Adapted from http://www.vervet.com/

Step-by-Step 47

Grand Challenge: Analyzing a document to
create a DTD

A DTD is an ideal picture of one type of document. It tells you what
components must be there, which are optional, and how often.

Here is a sample document, followed by a diagram showing all the compo-
nents the team figures it would ever put into a procedure. Please create a DTD
for this type of document. Remember: the example is just one variation on the
type. The diagram shows the abstract view, a standard procedure that includes all
possible components, and shows their relationships.

Sample Document:

Getting a close-up view of your document
If you want to enlarge the text onscreen, so you can check those commas, you can
pick a particular percentage of the regular view, enlarging that to 150% or more.

You must be in Page Layout or Outline view. (Choose these
from the View menu).

You need a mouse for this procedure.
The key concept here is zooming in, to see everything bigger.

You can also zoom out, to reduce the size of the text, but scan
more of it at once. (See our next procedure, "Getting a bird's eye
view of your document").

1.Choose View => Zoom.
You see the Zoom dialog, which lets you pick the way you want to

enlarge (or shrink) the document onscreen.

48Making a DTD

2. On the left side of the dialog, click 200%, or if
you want a different enlargement, click the up
arrow in the Percent panel.

WWWWWarararararningningningningning: do not choose Whole Page or Many Pages, because your
document will suddenly seem to shrink onscreen, to fit the whole
page, or several pages onto the display.

Percentage means the amount that you want to change the size
of the document onscreen. Percentages above 100 make it look
bigger; percentages below 100% make it smaller.

3. Click OK.

The result: your document looks a lot bigger.

You have zoomed out.

Example: Imagine you have some text in italic, and wonder
whether or not that thing at the end of the sentence is a comma
or a period. At normal size, with small type, you can"t tell. So
you decide to enlarge it. You choose Zoom on the View menu, and
pick 200%. Ah, now you can tell: it is a comma. You can make
the change while zoomed in, then go back to the normal view,
confident that you are ending your sentences with periods.

Next: shrinking the document onscreen.

Step-by-Step 49

Diagram of procedure

Action

Introduction

Required Tools

Prerequsites

Key Concepts

Task Definition

Optional

Optional

Optional

Optional

Optional

Name Required

1
Required,
max: 15

Step
1 Required

Warning Optional

Explanation of Term Optional

Results Optional

Result Illustration Optional

Result explanation Optional

Explanations

All
Optional

Example Optional

OptionalWhat Next

50Making a DTD

Use your DTD and model to identify and reorganize exist-
ing material.

Here is a step with scrambled explanatory material. Using the
DTD you have just created, and the diagram of an abstract proce-
dure, identify the explanatory elements, and draw arrows showing
how this should be reorganized to follow the ideal pattern. If
necessary, rewrite as you go.

2. Scroll to the end of your docu-
ment.

The twenty-page document extends out below this window.
The vertical bar on the right of your window is known as the
scroll bar because it offers several ways to scroll through your
document.

Imagine that your document is a giant papyrus scroll, and
your slave is unrolling it behind the window, so you can only
see a little bit of a time.

To move up and down in the document quickly, you have to
drag the little rectangle in the scroll bar, or press the up or
down arrow.

Do not press the double-down-arrow at this time because
that will just take you to the next heading. The scroll bar
looks like this: (art). The position of the elevator, that rect-
angle in the scroll bar, shows you about how far through the
document you are now.

For example, if you are at the beginning of the document,
your elevator is at the top; if you wanted to go to the middle,
you would drag it to the middle of the scroll bar. If you have
carried out our instruction, you are now at the end of the
document, because your elevator has reached the bottom of
the scroll bar, just above the down-pointing arrow at the
bottom.

Step-by-Step 51

Reading a DTD for fun
<!- - DTD for Shakespeare J. Bosak 1994.03.01, 1997.01.02 - - >

<!- - Revised for case sensitivity 1997.09.10 - - >

<!- - Revised for XML 1.0 conformity 1998.01.27 (thanks to Eve Maler) -
- >

<!ENTITY amp “&”>

<!ELEMENT PLAY (TITLE, FM, PERSONAE, SCNDESCR, PLAYSUBT,
INDUCT?, PROLOGUE?, ACT+, EPILOGUE?)>

<!ELEMENT TITLE (#PCDATA)>

<!ELEMENT FM (P+)>

<!ELEMENT P (#PCDATA)>

<!ELEMENT PERSONAE (TITLE, (PERSONA | PGROUP)+)>

<!ELEMENT PGROUP (PERSONA+, GRPDESCR)>

<!ELEMENT PERSONA (#PCDATA)>

<!ELEMENT GRPDESCR (#PCDATA)>

<!ELEMENT SCNDESCR (#PCDATA)>

<!ELEMENT PLAYSUBT (#PCDATA)>

<!ELEMENT INDUCT (TITLE, SUBTITLE*,
(SCENE+|(SPEECH|STAGEDIR|SUBHEAD)+))>

<!ELEMENT ACT (TITLE, SUBTITLE*, PROLOGUE?, SCENE+,
EPILOGUE?)>

<!ELEMENT SCENE (TITLE, SUBTITLE*, (SPEECH | STAGEDIR |
SUBHEAD)+)>

<!ELEMENT PROLOGUE (TITLE, SUBTITLE*, (STAGEDIR | SPEECH)+)>

<!ELEMENT EPILOGUE (TITLE, SUBTITLE*, (STAGEDIR | SPEECH)+)>

<!ELEMENT SPEECH (SPEAKER+, (LINE | STAGEDIR | SUBHEAD)+)>

<!ELEMENT SPEAKER (#PCDATA)>

<!ELEMENT LINE (#PCDATA | STAGEDIR)*>

<!ELEMENT STAGEDIR (#PCDATA)>

<!ELEMENT SUBTITLE (#PCDATA)>

<!ELEMENT SUBHEAD (#PCDATA)>

Outtakes from dream.xml

<?xml version=”1.0"?>

<!DOCTYPE PLAY SYSTEM “play.dtd”>

<PLAY>

<TITLE>A Midsummer Night’s Dream</TITLE>

<FM>

<P>Text placed in the public domain by Moby Lexical Tools, 1992.</P>

52Making a DTD

<P>SGML markup by Jon Bosak, 1992-1994.</P>

<P>XML version by Jon Bosak, 1996-1998.</P>

<P>This work may be freely copied and distributed worldwide.</P>

</FM>

Last scene of the play

<STAGEDIR>Enter OBERON and TITANIA with their train</
STAGEDIR>

<SPEECH>

<SPEAKER>OBERON</SPEAKER>

<LINE>Through the house give gathering light,</LINE>

<LINE>By the dead and drowsy fire:</LINE>

<LINE>Every elf and fairy sprite</LINE>

<LINE>Hop as light as bird from brier;</LINE>

<LINE>And this ditty, after me,</LINE>

<LINE>Sing, and dance it trippingly.</LINE>

</SPEECH>

<SPEECH>

<SPEAKER>TITANIA</SPEAKER>

<LINE>First, rehearse your song by rote</LINE>

<LINE>To each word a warbling note:</LINE>

<LINE>Hand in hand, with fairy grace,</LINE>

<LINE>Will we sing, and bless this place.</LINE>

</SPEECH>

<STAGEDIR>Song and dance</STAGEDIR>

<SPEECH>

<SPEAKER>OBERON</SPEAKER>

<LINE>Now, until the break of day,</LINE>

<LINE>Through this house each fairy stray.</LINE>

<LINE>To the best bride-bed will we,</LINE>

<LINE>Which by us shall blessed be;</LINE>

<LINE>And the issue there create</LINE>

<LINE>Ever shall be fortunate.</LINE>

<LINE>So shall all the couples three</LINE>

<LINE>Ever true in loving be;</LINE>

<LINE>And the blots of Nature’s hand</LINE>

<LINE>Shall not in their issue stand;</LINE>

Step-by-Step 53

<LINE>Never mole, hare lip, nor scar,</LINE>

<LINE>Nor mark prodigious, such as are</LINE>

<LINE>Despised in nativity,</LINE>

<LINE>Shall upon their children be.</LINE>

<LINE>With this field-dew consecrate,</LINE>

<LINE>Every fairy take his gait;</LINE>

<LINE>And each several chamber bless,</LINE>

<LINE>Through this palace, with sweet peace;</LINE>

<LINE>And the owner of it blest</LINE>

<LINE>Ever shall in safety rest.</LINE>

<LINE>Trip away; make no stay;</LINE>

<LINE>Meet me all by break of day.</LINE>

</SPEECH>

<STAGEDIR>Exeunt OBERON, TITANIA, and train</STAGEDIR>

<SPEECH>

<SPEAKER>PUCK</SPEAKER>

<LINE>If we shadows have offended,</LINE>

<LINE>Think but this, and all is mended,</LINE>

<LINE>That you have but slumber’d here</LINE>

<LINE>While these visions did appear.</LINE>

<LINE>And this weak and idle theme,</LINE>

<LINE>No more yielding but a dream,</LINE>

<LINE>Gentles, do not reprehend:</LINE>

<LINE>if you pardon, we will mend:</LINE>

<LINE>And, as I am an honest Puck,</LINE>

<LINE>If we have unearned luck</LINE>

<LINE>Now to ‘scape the serpent’s tongue,</LINE>

<LINE>We will make amends ere long;</LINE>

<LINE>Else the Puck a liar call;</LINE>

<LINE>So, good night unto you all.</LINE>

<LINE>Give me your hands, if we be friends,</LINE>

<LINE>And Robin shall restore amends.</LINE>

</SPEECH>

</SCENE>

</ACT>

</PLAY>

Examples

54Making a DTD

Answers
Challenge 0

<!ELEMENT Memo (To, CC?, BCC?, From, Date, Re, Body)>

<!ELEMENT To (#PCDATA)>

<!ELEMENT CC (#PCDATA)>

<!ELEMENT BCC (#PCDATA)>

<!ELEMENT From (#PCDATA)>

<!ELEMENT Date (#PCDATA)>

<!ELEMENT Re (#PCDATA)>

<!ELEMENT Body (#PCDATA)>

Challenge 1

<!ELEMENT Report (author, title,
category, abstract, keywords,
heading1?, heading 2, paragraph)>

<!ELEMENT author (#PCDATA)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT category (#PCDATA)>

<!ELEMENT abstract (#PCDATA)>

<!ELEMENT keywords (#PCDATA)>

<!ELEMENT heading1 (#PCDATA)>

<!ELEMENT heading2 (#PCDATA)>

<!ELEMENT paragraph(#PCDATA)>

Challenge 2
This element is not valid, because
the label element is in the wrong
place, and the cd_description
element is missing.

Challenge 3

See diagram =>.

book.intro

where.am.I

p

site.map

area.title
p

button

HI

book.overview

p

chapter.title

whats.new

p

button

general.cautions

p

button

Challenge 3: diagram

Step-by-Step 55

Challenge 4
For one of three sizes (no other sizes allowed): Enumerated values.

A Social Security Number: NMTOKEN.

The name of an image file, previously defined as an entity within your
DTD: ENTITY.

An indication of file type, chosen from several already defined as nota-
tions: NOTATION.

A unique all-text password: ID.

One or more elements, which you want to refer to: IDREFS

Challenge 5:
Which type would you choose for the following attributes?

One of three kinds of book cover. Enumerated values.

A serial number for each product. ID.

A pointer to a product, using its serial number. IDREF

A code that starts with an underscore. ID

The name of an entity that describes an external file. ENTITY

The date format being used. NOTATION

Challenge 6

<!ELEMENT PRODUCT (#PCDATA)>

<!ATTLIST PRODUCT DESCRIPTION CDATA #IMPLIED>

<!ATTLIST PRODUCT Price CDATA #IMPLIED>

Challenge 7
<!ELEMENT Partner (#PCDATA)>

<!ATTLIST Partner MISSION CDATA #IMPLIED

HEADQUARTERS_CITY CDATA #IMPLIED>

Challenge 8
<!ELEMENT employee (#PCDATA)>

<!ATTLIST employee STATUS (fulltime | parttime | contractor) #IM-
PLIED>

Challenge 9
<!ELEMENT AGENT (#PCDATA)>

<!ATTLIST AGENT SECURITY (None | Secret | Top_Secret | Eyes_Only)
#IMPLIED>

Challenge 10
<!ELEMENT COURSE (#PCDATA)>

<!ATTLIST COURSE code ID #REQUIRED>

Challenge 11
<!ELEMENT CONTRACT (#PCDATA)>

<!ATTLIST CONTRACT contract_number ID #REQUIRED>

Answers

56Making a DTD

Challenge 12
<!ELEMENT HOWTO (#PCDATA)>

<!ATTLIST HOWTO relevant.tips IDREFS #IMPLIED>

<!ELEMENT TIP (#PCDATA)>

<!ATTLIST TIP TIP_CODE ID #REQUIRED>

Challenge 13
<!ELEMENT SCENT (#PCDATA)>

<!ATTLIST SCENT products_with_this_fragrance IDREFS #IMPLIED>

<!ELEMENT PRODUCT (NAME, PACKAGE, SIZE, LANGUAGE,
SCENT)>

<!ATTLIST PRODUCT sku ID #REQUIRED>

…

Challenge 14
<!ELEMENT PART (#PCDATA)>

<!ATTLIST PART creation_date NMTOKEN #REQUIRED>

Challenge 15
<!ELEMENT CONFIRMATION (#PCDATA)>

<!ATTLIST CONFIRMATION message_number ID #REQUIRED>

Challenge 16
<!ELEMENT INVENTORY (ITEM*)>

<!ELEMENT ITEM (#PCDATA)>

<!ATTLIST ITEM

Code ID #REQUIRED

Description CDATA #IMPLIED

Price NMTOKEN #REQUIRED

Suggestion IDREFS #IMPLIED

Featurelist IDREF #REQUIRED

Code: a unique identifier

Description: rambling raw text

Price: begins with a number

Suggestion: there may be a number of tips referenced here.

Featurelist: this is another element we are pointing them to, through a
link.

Problems:

Step-by-Step 57

In both items, the code has a value beginning with a number, even though
that is invalid for an ID.

The first item has no reference to a Featurelist, which is required.

The second item does not follow the order in which the attributes were
defined, but that is OK for the software. It just drives humans nuts.

Challenge 17
In DTD:

<!ELEMENT LOGO EMPTY>

<!ATTLIST LOGO source ENTITIES #REQUIRED>

In document:

<LOGO source=” OurLogosmall” />

Challenge 18
In DTD:

<!ELEMENT WHITEPAPER EMPTY

<!ATTLIST WHITEPAPER pointer ENTITY #REQUIRED>

In document:

<WHITEPAPER pointer=”WhitePaper001" />

Challenge 19
In DTD:

<!ELEMENT Face EMPTY>

<!ATTLIST Face

SSN NMTOKEN #REQUIRED

student_number NMTOKEN #REQUIRED

source ENTITY #REQUIRED

fileformat (png | gif | jpg) #REQUIRED>

In document:

<Face SSN=”555-55-5555" student_number=”54321" source=JPRICE
fileformat=”jpg” />

Answers

58Making a DTD

Challenge 20
<!ELEMENT Painting EMPTY>

<!ATTLIST Painting

accession_number NMTOKEN #REQUIRED

inventory_number NMTOKEN #REQUIRED

source ENTITY #REQUIRED

file_format (bmp | tif | png | gif | jpg) #REQUIRED >

In document:

<Painting accession_number=”20030328" inventory_number=”10789"
source =”GUERNICA” file_format = “bmp” />

Challenge 21
<!ELEMENT ServiceChat (Heading, Body, SeeAlso*)>

<!ELEMENT ContactUs (Heading, Body, SeeAlso*)>

<!ELEMENT PrivacyPolicy (Heading, Body, SeeAlso*)>

<!ELEMENT Heading (#PCDATA)>

<!ATTLIST Heading target ID #REQUIRED>

<!ELEMENT Body (#PCDATA)>

<!ELEMENT SeeAlso (#PCDATA)>

<!ATTLIST SeeAlso reference IDREF #REQUIRED>

Challenge 22
<!ELEMENT Overview (Heading, Body, SeeAlso*)>

<!ELEMENT Description (Heading, Body, SeeAlso*)>

<!ELEMENT Details (Heading, Body, SeeAlso*)>

<!ELEMENT Heading (#PCDATA)>

<!ATTLIST Heading target ID #REQUIRED>

<!ELEMENT Body (#PCDATA)>

<!ELEMENT SeeAlso (#PCDATA)>

<!ATTLIST SeeAlso reference IDREF #REQUIRED>

Challenge 23
<CONTENT>

<ARTICLE AUTHOR=”JONATHAN PRICE” EDITOR=”LISA PRICE”
DATE =”20040606" EDITION=”MORNING” ARTICLE_CODE =
“M335”>

<HEADLINE ID=”H335">Big Beach on the Big Island </HEADLINE>

<BYLINE>By Jonathan Price

<EMAIL biolink=”Contact33"></BYLINE>

Step-by-Step 59Answers

<LEAD>Black lava sands, where Captain Cook was killed, lead you past
ancient altars. </LEAD>

<BODY> The beaches on Hawaii, the biggest of the islands, let you tip
your toe into history. One cove surrounds an altar to Lono, the shark
god, where enemy warriors were tied on a pile of rocks, waiting for the
tide to come in, with the sharks, to devour the freshly drowned sacrificial
victims. On the Black Sand Beach, you can walk where Captain Cook
quarreled with the locals over petty thievery; they took his life, and drove
away his boats.

</BODY>

<NOTES> For more on history underfoot, see http://
www.melekalikimaka.org.</NOTES>

</ARTICLE>

</CONTENT>

Challenge 25
Boilerplate: Yes, unless it contains illegal characters.

A standard text including an element: Yes.

An image: no, this file is external.

A stretch of text that you do not want parsed: Well, then you do not
want it to be parsed.

Challenge 26:
A video clip: General External Unparsed Entity

A file containing raw text plus an element marked up in XML: General
External Parsed Entity

An image in png format: General External Unparsed Entity

A text file containing company names: General External Parsed Entity

Another page of XML: General External Parsed Entity

Challenge 27
<!ENTITY %TK

“<!- - Incomplete declaration. The specs are still to come.- ->” >

Challenge 28
<!ENTITY %TBD

“<!- - To be determined. This dummy element is just a placeholder, for
now.- ->”>

Challenge 29
<!ELEMENT PHOTO EMPTY>

<!ATTLIST PHOTO

source ENTITY #REQUIRED

file_type (jpg | bmp) #REQUIRED>

Challenge 30
<!ELEMENT STANDARD EMPTY>

<!ATTLIST STANDARD

source ENTITY #REQUIRED

file_type (doc | htm | html | txt) #REQUIRED>

60Making a DTD

Super Challenge

<?xml version=”1.0" standalone=”no”?>

<!DOCTYPE CATALOG SYSTEM http://www.theprices.com/dtd/
catalog.dtd [<!ENTITY tablesawimage SYSTEM http://
www.theprices.com/images/tablesaw.jpg NDATA JPG>]>

<?xml-stylesheet type=”text/xsl” href=”http://www.theprices.com/
catalog.xsl”?>

<CATALOG>

<PRODUCT NAME=”The Ferret Table Saw” CATEGORY = “Table”
PARTNUM =”t4765” PLANT = “Milwaukee” INVENTORY =
“Backordered”>

<DESCRIPTION>A magnificent addition to any shop. Cuts wood up to
one-foot thick. 15 interchangeable blades.

&tablesawimage;

</DESCRIPTION>

<SPECIFICATIONS WEIGHT=”532" POWER=”220"> Weight: 532
pounds.

Power: 220 volts.

Meets OSHA standards.

</SPECIFICATIONS>

<OPTIONS FINISH=”Metal” ADAPTER=”NotApplicable”
CASE=”NotApplicable”> The finish is an excellent gun-metal.</OP-
TIONS>

<PRICE MSRP=”1577" WHOLESALE=”835" STREET= “1199”
SHIPPING=”185">Manufacturer’s Suggested Retail Price: $1577</PRICE>

<NOTES>An excellent buy. &AUTHOR; &COMPANY; &EMAIL;</
NOTES>

</PRODUCT>

</CATALOG>

Step-by-Step 61

A

Answers 54-60
ANY in an element declaration 10
Asterisk in an element declaration 12
Attribute list declarations

CDATA 17, 19
Character references 17
Component diagram 16
Constraints on attributes 16
Constraints on values 17
ENTITIES data type 18, 24-25
ENTITY data type 18, 24-25
Enumerated Values 17, 19-20
FIXED value 26
General entity references 17
Identifier (ID) data type 18, 20-21
Identifier reference (IDREF) data type 18,
21-22
Identifier references list (IDREFs) data type
18, 21-22
IMPLIED value 27
Keyword 17
Name token (NMTOKEN) data type 18, 22-
23
Name token list (NMTOKENS) data type
18, 23
New line characters 17
Normalization 17
NOTATION data ty0pe 18, 25
Order of appearance in document 16
Overview 8
Purpose 16
Quotes 17
REQUIRED value 26
Spaces 17
Targets for links 27
Value types 17-26
What is not an attribute 16

B

C

Categories of element content 9-10
CDATA In attribute lists 17, 19
Character references In attribute lists 17
Comments

Overview 8
Syntax 44

Component diagram In attribute lists 16
Constraints on attributes 16
Constraints on values 17

D

Index

Description (Formal Public Identifier) 6
DOCTYPE declaration

Diagram 4
Document as entity in 34
Document element 4
Including internal DTD 4
Keyword 4
Locations 4
PUBLIC 5-7
Purpose 4
Source 4
SYSTEM 5-6

Document as entity 34
Document Type Definition (DTD)

Catalog 45-46
Components 8
Creating from a document 47-49
Examples 14, 15
External 3
Idea behind 9
Internal 3
Language command reference DTD 28
Play 51
Procedure (diagram) 49
Overview 2
Using to edit 50

E

Element declarations
ANY 10
Asterisk 12
Categories of element content 9-10
Diagram of components 9
Elements within 11-13
EMPTY 10
Exclusive or 12
MIXED 12-13
Operators, summary of 13
Overview 8
PCDATA 10-11
Pipe 12
Plus sign 12
Question mark 12

Elements reused 31-32
EMPTY in an element declaration 10
ENTITIES data type in attribute lists 18, 24-25
ENTITY data type in attribute lists 18, 24-25
Entity declarations

Document as entity 34
External entity defined 33
General entity defined 34
General external parsed entity 37-38
General external unparsed entity 38-39
General internal parsed entity 35-37
Internal entity defined 33
Overview 8

62Making a DTD

Parameter entity defined 34
Parameter external parsed entity 42
Parameter internal parsed entity 40-41
Parsed entity defined 33
Purposes 33
Types 33-34
Unparsed entity defined 34

Enumerated Values in attribute lists 17, 19-20
Exclusive or in an element declaration 12
External DTD 7
External entity defined 33

F

FIXED value in attribute lists 26
Formal Public Identifier 6

Description 6
Language 6
Owner 6
Prefix 6
Text class 6

G

General entity defined 34
General entity references in attribute lists 17
General external parsed entity 37-38

Diagram 37
Location 37-38
Name 37
SYSTEM 37

General external unparsed entity 38-39
Diagram 38
Location 38
Name 38
NDATA 38
Notation 38
SYSTEM 38

General internal parsed entity 35-37
Diagram 35
Example 36
Name 35
Value 35

H

I

Identifier (ID) data type in attribute lists 18, 20-21
Identifier reference (IDREF) data type in attribute lists 18, 21-
22
Identifier references list (IDREFs) data type in attribute lists
18, 21-22
IMPLIED value in attribute lists 27
Internal DTD 7
Internal entity defined 33

J

K

Keywords 8, 17

L

Language (Formal Public Identifier) 6
Location

in general external parsed entity 37
in general external unparsed entity 38
in parameter external parsed entity 40

M

Midsummer Night’s Dream 51-53
MIXED in an element declaration 12-13

N

Name token (NMTOKEN) data type in attribute lists
18, 22-23
Name token list (NMTOKENS) data type in attribute
lists 18, 23
Namespace identifier 5, 6
Namespace specific string 6
NDATA 38
New line characters in attribute lists 17
Normalization in attribute lists 17
NOTATION data type

in attribute lists 18, 25
In general external unparsed entity 38

Notation declarations
Diagram 43
Location 43
Name 43
Overview 8
PUBLIC 43
SYSTEM 43

O

Operators in an element declaration, summary of 13
Order of appearance of attributes in document 16
Owner (Formal Public Identifier) 6

P

Parameter entity references, in general 8
Parameter entity defined 34
Parameter external parsed entity 42

Diagram 42
Location 42
Name 42
SYSTEM 42

Parameter internal parsed entity 40-41
Diagram 40

Step-by-Step 63Index

Name 40
Value 40

Parsed entity defined 33
Parser 2
PCDATA in an element declaration 10-11
Percent sign, for parameter entities 40-42
Pipe in an element declaration 12
Plus sign in an element declaration 12
Prefix (Formal Public Identifier) 6
Processing Instructions (PIs) 8
PUBLIC 4-7, 43
Public Identifier, Formal 6
Public location 6

Q

Question mark in an element declaration 12
Quotes in attribute lists 17

R

REQUIRED value in attribute lists 26
Reuse of elements 31-32

S

Shakespeare in XML 51-53
Software using valid XML documents
Spaces in attribute lists 17
Standalone 3
SYSTEM

In DOCTYPE declaration 4-6
In general external parsed entity 37
in general external unparsed entity 38
in notation declaration 43
in parameter external parsed entity 40

T

Targets for links (attributes) 27
Text class (Formal Public Identifier) 6

U

Uniform Resource Identifier 5
Uniform Resource Locator (URL) 5-7, 37
Uniform Resource Name (URN) 5-6
Unparsed entity defined 34

V

Valid XML document 2
Validity, testing for 2
Value types in attribute lists 17-26

W

Well-formed XML document 2

X

XML declaration 3

Y

Z

